製造DXに向けたアプリケーション開発 製造DXによる品質管理の向上	電気・情報系 機械系	『製造DX』 をテーマに、トッパンのものづくりにおける人のカンコツ・経験頼りの業務を、デジタル化・システム化で解決するべく、 エッジ層 (SCADA) アプリケーションの開発業務を体験していただきます。	8月28日(月)~9月1日(金) 9:00-18:00	사는 CD 입에(#F) 15 15 15 15 15 15 15 15 15 15 15 15 15	
制件DVI-トスロ研管理の向ト				凸版印刷(株) 板橋工場 (東京都板橋区志村1-11-1)	無し
表近DVIC4の印度日 店(MI)工	電気・情報系	顧客に信頼される高い品質、生産性と品質を両立させる高利益体質の実現に向け、その基盤となるモノづくりにおける プロセスと品質のバラつきを可視化・分析するデジタル技術(AI)を体験していただきます。	8月28日(月)~9月1日(金) 9:00-18:00	凸版印刷㈱ 板橋工場 (東京都板橋区志村1-11-1)	無し
スマートファクトリー化に向けた自働化設備、 生産設備の調達	専攻問わず	高品質で安定した設備の導入のためのサプライヤ調査、設備仕様比較、価格分析業務を体験していただきます。 また、新技術や業界情報収集のためのサプライヤーとのコミュニケーションも体験していただきます。 設備調達部門の取り扱い品目は、全事業部門の生産設備、自働化設備、ITシステム、建築工事と多岐に渡ります。幅広い業務について理解を深めていただきます。	8月28日(月)~9月1日(金) 8:30-17:30	凸版印刷㈱ 神田和泉町ビル (東京都千代田区神田和泉町1番地)	有り
AIを活用したサービス/アプリケーション開発	電気・電子 情報・画像	今後の更なるデータ活用、情報活用のサービス提供には、進化が目覚ましいAI(生成AIなど)の利用が重要なポイントのひとつとなっています。 本インターンシップでは、AIを利用したアプリケーション開発を通じて、新たなサービス・価値創出のプロセスを体験していただきます。	8月28日(月)~9月1日(金) 9:00-18:00	凸版印刷㈱ 秋葉原営業ビル DI本部事務所 (東京都台東区台東1丁目5番1号)	無し
IoTデバイスを活用した 工場系アプリケーション開発	機械 電気・電子 情報・画像・通信	少子高齢化による労働人口不足などを背景に、スマートファクトリー化の実現が大きな社会課題となっています。 本インターシップでは、製造現場に備えられたIoTデバイスから取得したデータを用いて、 製造現場を改革する自動化・可視化アプリケーションの開発を体験して頂きます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷㈱ 秋葉原営業ビル DI本部事務所 (東京都台東区台東1丁目5番1号)	無し
ロボティクス(技術)を活用した実験の自動化	機械	人間は柔軟に作業を微調整して実験を行っている為、完全に機械で真似ることは難しい面があります。 ロボット、各種装置を用いて以下に自動にて同様の結果を得られるかの工夫が必要になります。 これらが実施出来ると人間とは違い時間的制約なく、研究の効率化が進めらることを期待しています。 大学で学んでいる知識が当社にてどの様に企業活動として活用できるか等を体験出来ると考えています。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
5G通信の新事業開発	電気・電子	第5世代移動通信システム(5G)は、超高速・大容量、超低遅延、多数同時接続などの特長から、 次世代の通信基盤として分野を問わず期待され、総務省主導で普及へ向けた取り組みが推進されています。 EMC技術開発プロジェクトは、来るべき5G市場での事業展開を見据え、ソリューション開発検討を進めています。 自社開発の5G電波制御部材(吸収体等)の効果実証評価に参加頂く予定です。 新しい事業の創出を目指す活動のため、試行錯誤の多い職場ですが、意欲的に取り組んで頂ける方のご参加を期待します。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
ウェットコーティング技術を活用した 新商材開発	化学・材料 機械 電気・電子	当社の様々な商材を生産するために使われているウェットコーティング技術を活用し、全く新分野の商材を生み出していくことが自社の強みを生かすために重要な課題となっています。 その新商材開発の一部を体験することで、企業の研究開発で求められるスピード感を出すために何を大切にしているか、 大学での研究がどう生かされるか理解を深めていただきます。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
押出成形法によるリサイクルフィルム開発	化学・材料	当社は、押出成形法を用いたフィルムの研究を行っています。 押出成形法とは、粒状の熱可塑性樹脂(高分子化合物)を200℃以上の高温で溶融させ、「Tダイ」と称する細長い線状の開口から押出し、 その後、冷却固化させることで帯状の成形体(フィルム)を得る手法です。 本インターンシップでは、サーキュラーエコノミーの実現を目指した軟包装材の水平リサイクルに関する研究開発に取り組んでもらう予定です。 インターンシップを通して、高分子化合物・フィルム製膜・物性評価などに関する知識を得ることが出来ます。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
バリア技術を用いた 消火フィルムの潮解性抑制設計	化学・材料	エネルギー分野の発展に伴い火災事故は、身近に潜む社会課題として認識し、対策が必要な災害です。 トッパンでは火災発生時の熱に反応し、消火効果のあるエアロゾル(煙)を放出する「消火フィルム」を開発しました。 本インターンシップでは、消火フィルムの開発チームに加わってもらい、 材料設計からフィルム化の検討、自ら作製したサンプルの性能評価といった新規商材開発の流れの一端を経験して頂くことを考えています。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
調光フィルム向け高付加価値材料の開発	化学・材料	「ノーマルブラック調光フィルム開発」 EV車向け高耐久、低温応答性の黒色調光フィルムの開発。 ニュースリリース:https://www.toppan.co.jp/news/2022/12/newsrelease221219.html 研究開発紹介:https://www.toppan.co.jp/story/r-and-d/introduce/	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
自社開発QD層インキ開発	化学・材料	次世代ディスプレイと称される、性能・コストに優れる自発光量子ドット(QD)ディスプレイの材料開発を行っています。 本インターンシップでは、現在当社が開発しているQD粒子の分散安定化・QD塗膜の高信頼性化、及び金属酸化物ナノ粒子のナノ分散化、の 開発チームに加わって頂き、ナノ粒子の合成・製造過程から、粒子分散技術及び塗膜形成・パターニング技術の一連の流れや作業を体験して頂きます。 これによって大学の研究で培った知識を企業でどう活用し、どう成果に結び付けて行くか、の理解を深めて頂くと共に、 企業に取って必要なスキル・人財は何か、を知る機会を提供いたします。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
量子化学計算を活用した機能性材料の設計	化学・材料	凸版印刷の多くの製品には、様々な機能性材料が使われている。当テーマでは基盤研究とし、量子化学計算を活用して、それらの材料設計に取り組んでいる。 インターンシップでは、量子化学計算にて材料の特性を予測するところから、実際に材料を合成、特性を確認するといった、材料設計の流れを体験していただ く。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
包装容器の構造シミュレーション	機械 情報·画像·通信	凸版印刷ではSX(Sustainable Transformation)を推進し、環境に配慮した包装容器の開発を進めています。 当部所では、計測やシミュレーション技術を活用し、どのような材料や構造にすれば、それら包装容器の強度や利便性を向上できるのか研究しています。 インターンシップでは業務の一部を体験していただき、商品の研究開発において、大学で学んだ知識をどのように活用できるのか経験して頂く予定です。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
メタレンズの光学評価技術	数理 物理	微細構造の光学評価 インターンシップでは、当チームで設計した微細構造の光学性能を評価し、光学シミュレーション結果との整合性を検証してもらいます。 具体的には、総研で試作したメタレンズの集光の様子を確認いただき、性能(MTF,収差)を評価してもらいます。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
表面機能の制御に向けたナノ構造形成技術の開発	専攻問わず	凸版印刷は、フォトマスクやカラーフィルタの製造を通じて、電子線や光を用いたリソグラフィ技術を深耕し、偽造防止技術などへも拡張して事業化しています。 近年、ARグラスをはじめとする映像投影デバイスに搭載される光学素子や、創薬、検査などの医療分野においてナノ構造形成技術が注目されています。 電子線や光と感光性材料との物理化学現象を理解し、どのように応用して目的の形状を形成しているのか、インターンを通して体験して頂きます。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
抗菌・抗ウイルス材料/評価技術の構築	化学・材料 バイオ・環境	コロナ禍において、抗菌・抗ウイルス関連製品の国内市場は拡大しており、当社においても抗菌・抗ウィルス製品の開発が進められてきました。 総合研究所では、当社の抗菌・抗ウィルス製品の開発支援のため、①抗菌・抗ウイルス評価技術構築、②抗菌・抗ウイルス性能発現メカニズムの解明、③商材開発支援を3つの柱として検討を行っています。 本インターシップでは、抗菌抗ウイルス製品の成り立ちと、その評価方法について体験頂きます。	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
TOPPANの3D細胞培養技術 invivoid®を用いた研究	バイオ・環境	■テーマ例・ロボット×AIによるinvivoidの工業化に資する研究・invivoidによるがんモデル、肝毒モデルの作成とその評価 独自3D細胞培養技術invivoid®を用いた研究開発の一部を体験し、企業での新事業創出におけるスピード感や 大学などアカデミアとの共同研究成果がどう生かされるか理解を深めていただく。 invivoid HP: https://www.toppan.co.ip/invivoid/ip/index.html	9月4日(月)~8日(金) ※宿泊施設利用の場合は9月2日に集合	凸版印刷㈱ 総合研究所(埼玉県北葛飾郡杉戸町高野台南4-2-3)	有り
デジタル×リアルの 新規ビジネス開発プロセスの体験 (デジタルサイネージ・カメラソリューション等)	情報系	先端表現技術を社会課題の解決やクライアントと消費者の新たなコミュニケーションを生み出す施策の提案〜実施につなげるための企画、開発を行っています。 その中でも当部門ではクライアントの店頭販促やイベント向けにデジタル系の技術を活用した什器やアトラクションの企画開発、提案、実施を担当しており、 日々、世の中の最新技術動向を追いかけながら、その技術をどのように活用すればクライアントの思いを消費者にしっかりと届けることができる施策を提案できるかを考えています。 インターンシップでは、我々の業務領域をご紹介させて頂くと共に、日々の業務にご一緒頂く事で、企画出しからそのアイデアが実現に至るまでの プロセスの一端を体感いただきます。	9月4日(月)~8日(金) 9:00-18:00	丸の内(ニッポンギャラリー 東京都千代田区丸の内3-4-1 新国際ビル1階/2階) 高輪GW・新宿クロスビジョン(新宿のネコサイネージ)等導入実績した施設 本所GCビル(東京都墨田区本所1-32-5)	無し
スマート社会「Society5.0」の実現に向けて デジタルサイネージ商材を中心に 新サービス開発と拡販	電気·電子 情報·画像·通信	デジタルサイネージや、イベント系ソリューションによって、「人間の行動を誘導する空間演出」を実現することや視覚だけでなく 五感に訴える情報のマネジメントを成果として目指しています。 4K映像配信普及、大容量高速通信帯(5G・光)普及の需要、市場の変化、その他新技術によりニーズがパーソナライズされていくので、 そこに対応する新事業を確立する思考やプロセスを体験頂きます。	9月4日(月)~8日(金) 9:00-18:00	丸の内(ニッポンギャラリー 東京都千代田区丸の内3-4-1 新国際ビル1階/2階) 高輪GW・新宿クロスビジョン(新宿のネコサイネージ)等導入実績した施設 本所GCビル	無し
映像コミュニケーションとクリエイティブ 表現方法・手法の実制作体験	デザイン系	私たちは得意先の目的・課題に対して、映像という手法を用いて「伝えたいこと」そして「伝わること」を視覚・聴覚に直接的に、情報やメッセージを伝えていくとこと。 主なテーマとして枠にとらわれない映像企画・制作をコアにしたビジネスの創出としてます。 時流に合わせた媒体や先端映像機器の特性に対して、的確に特性に合わせたの表現方法・手法を活用した企画〜制作まで活動していますが、 今回はその映像企画・制作の大きな流れを体験していただきます。	9月11日(月)~15日(金) 9:00-18:00	丸の内(ニッポンギャラリー 東京都千代田区丸の内3-4-1 新国際ビル1階/2階) や制作・撮影現場 本所GCビル	無し
ビジュアルコミュニケーションを起点とした 新規ビジネス開発 (映像・映像技術)	デザイン系 情報・画像・通信	ビジュアルコミュニケーションで社会やクライアントの課題解決を目指す部署です。 「クリエイティブ×テクノロジー」視点で新たなコンテンツ表現の企画立案、提案活動、制作業務を行う傍ら、 新たなビジュアルコミュニケーション表現に必要な基盤技術の開発にも取り組んでいます。 インターンシップでは日々の業務に帯同頂き、企画・制作の実務ベースでアイデア出しから実施に至るまでのプロセスや開発業務の一端を体験して頂きます。	9月11日(月)~15日(金) 9:00-18:00	丸の内(ニッポンギャラリー 東京都千代田区丸の内3-4-1 新国際ビル1階/2階) や制作・撮影現場 本所GCビル	無し
UnityAsset、ヘッドマウントディスプレイを使った コンテンツのプロトタイピング	情報・画像・通信	HMD・パソコン画面で体験可能な3Dコンテンツ、情報の提示手法、インタラクションの検討と実装 実装後、先端内部関係者に体験会を実施し、意図した体験が得られたかアンケ―トを実施いたします。 Unityを使いオキュラスクエスト・Windowsパソコン向けに制作を実施いたします。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷㈱ 本所GCビル(東京都墨田区本所1-32-5)	無し
「MiraVerse® Core」を使用した3Dシミュレーションプロトタイピング	情報·画像·通信	凸版が開発しているWebサイトでの3Dシミュレーションサービス「MiraVerse® Core」を使用した、プロトタイプ開発に取り組んでいただきます。 「MiraVerse® Core」の特長を理解し、社会へどのように貢献できるかを考えた上で、具現化する流れを体験していただきます。 MiraVerseCore: https://solution.toppan.co.jp/newnormal/service/miraversecore.html	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) 本所GCビル(東京都墨田区本所1-32-5)	無し
XR観光アプリ ストリートミュージアム活用提案 及び教育・学習目的のVRの企画・開発	専攻問わず	VR、AR、メタバース等の技術を活用した地方自治体の観光活性化ビジネス、及び安全教育や防災をテーマにした実務案件の企画、制作ディレクション、進行管理の一部を担いながら、企画制作業務の流れを体験していただきます。 ストリートミュージアム : https://www.streetmuseum.jp/	9月4日(月)~8日(金) 9:00-18:00	凸版印刷㈱ 本所GCビル(東京都墨田区本所1-32-5)	無し
メタバース・WEB3領域におけるコンシューマー向けの 新たな事業開発	専攻問わず	メタバース・WEB3の領域におけるコンシューマー向けの新規事業開発を前提にアイデア出しワークを実施していただきます。 事業開発のフレームワークで事業アイデアの組み立てを個人ワークとグループワークでおこなってもらい、簡単な事業計画書を立案いただきます。 時期によってはオープンなビジネスコンテストへの応募も検討いたします。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) 本所GCビル(東京都墨田区本所1-32-5)	無し
アバターを活用した対話型デジタルアシスタント開発	専攻問わず	凸版が開発しているメタクローン技術を活用して、最新のLLM(大規模言語モデル)を用いた「対話型デジタルアシスタントの開発」を体験していただきます。 企画から設計、デモアプリケーションの実装までの一連のプロセスを体験できるインターンシップとなっています。 メタバース上に自分のデジタル分身を生成するサービスメタクローンアバター: https://www.toppan.co.jp/news/2021/11/newsrelease211130_2.html	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) 本所GCビル(東京都墨田区本所1-32-5)	無し
左 A I E F A A A A A A A A A	は芸術の研選 Nを活用したサービス/アプリケーション開発 OTデバイスを活用した 電素アプリケーション開発 DTボディクス(技術)を活用した 電素アプリケーション開発 DTボディクス(技術)を活用した IG通信の新事業開発 DTボディクス(技術)を活用した IG通信の新事業開発 DTボディクス(技術)を活用した IG通信の新事業開発 DTボディクルンが技術を活用した IG通信の新事業開発 IG通信の新事業による IG通信信息を表現した。 IG通信信息を表現した。 IG通信信息を表現した。 IG通信息を表現した。 IGMの表現した。 IGMの表現したるによりままする。 IGMの表現したるによりままする。 IGMの表現したるによりままする。 IGMの表現	#技術の政策 (1971年) (197	Part	### 1997 Proposed P	

部門者	番号	テーマ	推奨系統	概要	実施期間	実施場所	宿泊施設手配の 有無
	28	医療・アパレル分野への活用を目指した 画像からの照明情報・分光反射率情報 推定技術の研究開発	情報系 (画像処理·解析·認識)	昨今、急速にデジタル技術が普及していく中で、解決しなければならない問題が多々あります。例えば、アパレル系のECサイトで服を買おうとするとき、ウェブで見た商品の写真と、配送された実物の服の印象が違ったという経験はありませんか?これまでトッパンは印刷物の品質管理の一環として、色管理技術(CMS; カラーマネジメントシステム)を構築しており、この技術を適用して上記のような問題を解決しようと考えています。この技術の研究開発は、実空間の情報をいかにデジタル上で簡便に正確に伝達できるかを突き詰めるところにあります。本インターンシップでは、この研究開発の流れを体験して頂きます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	無し
	29	XR関連研究開発	情報 複合領域	サイバー空間とフィジカル空間がシームレスに繋がり、人が時間や空間、身体能力などの制約から解放され、これまで以上に活躍できる社会、 当テーマでは、その実現に欠かせない要素のひとつであるXRを研究領域とし、映像表現手法やインターフェースの探求に取り組んでいます。 本インターンシップでは、その研究開発プロセスを体験して頂きます.	9月11日(月)~15日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	無し
;	30	生成AI研究	情報・画像・通信	本テーマでは、画像生成AIなどの生成AIの最新技術に触れ、生成AI分野における研究業務を体験していただきます。	8月28日(月)~9月1日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	無し
;	31	認識系AI研究	情報系 (自然言語処理・画像処理・解析 認識)	・本テーマではOCR(文字認識)技術(くずし字AI-OCR)や自然言語処理(文章AI校正)に関して研究を行っています。 インターンシップ活動の中で私たちの研究業務を体験していただきます。実際の体験内容については対象者の興味などを参考に決めます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	無し
;	32	AIの研究・開発 〜XAI、生成AI、需要予測等の開発実習	情報∙画像∙通信	当社はマーケティング、製造・流通、デジタルコンテンツなどDX事業を成長事業の1つとして位置付け、ビジネスを展開しています。 当部門は、生成AI、XAI(説明可能なAI)、需要予測、人物・物体認識など基盤技術の研究開発に取り組みながら、DXビジネスでの活用に向け取り組みしています。 インターンシップでは、それぞれの研究テーマに関し、開発実習の形式でAIの研究・開発に関して体験していただきます。	8月28日(月)~9月1日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	無し
;	33	量子コンピュータを活用した 材料開発・評価手法の研究	化学·材料	凸版印刷では、量子コンピューティング技術を様々な分野で活用することを目指しており、 特に化学分野では、革新的な新規材料や機能性材料の創出が期待されるため、実用化に向けた研究に取り組んでいます。 本インターンシップでは、材料の物性値予測のために古典/量子コンピュータを利用した量子化学計算を行い、 計算結果を評価することで、量子コンピュータの将来的な有用性を検討する研究の流れを体験していただきます。	9月11日(月)~15日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	無し
;	34	メタバース・Web3における アイデンティティ管理手法の研究	情報∙画像∙通信	将来AIの発達により、自身の複数のアバター(アイデンティティ)を自動で行動させる(労働など)ことが想定されます。当室では子のアバターのなりすまし、 乗っ取り等の課題を解決すると共に、様々なアバターをメタバース・Web3(バーチャル)、そしてリアル双方をシームレスで管理する技術の研究開発をしております。 インターンシップでは、様々なユースケースに対してリスクを抽出し、当該リスクに対する技術対応策を検討するプロセスを体験していただきます。	8月28日(月)~9月1日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	無し
;		DXサテライト開発拠点での サービス開発・アプリケーション開発	専攻問わず	DXを推進する新たな開発拠点「ICT KŌBŌ」にて『地域課題をICTで解決する』をテーマに、サービス開発やものづくりの一連のプロセスを体験するプログラムを 予定しております。 技術的アプローチ留まらず、企画立案などさまざまな実務を体験していただきます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷株式会社 ICT KŌBŌ IIZUNA (長野県上水内郡飯綱町大字赤塩2489 いいづなコネクトEAST)	有り
D	36	IoTとAWSを活用したアプリケーション開発 (組込開発から通信、SREまで)	専攻問わず	IoTやエッジAIを活用したDXプロダクト開発を推進するチームにおいて、スマートシティや工場SX、施設・資材管理サービス開発の支援を 体験するプログラムを予定しております。 限られた時間の中、それぞれの興味分野・保有ノウハウに合わせてプログラム内容やレクチャー範囲ははカスタマイズしていくスタイルを想定しています。 組込~通信~クラウド~データ分析と、フルスタックエンジニアを目指しましょう。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) DXデザイン事業部 ICT開発センター (東京都北区東十条3-10-36 8F)	無し
X デザイン -	37	Unityを活用したメタバースアプリケーション開発 (3DCG主体も可)	専攻問わず	・当社が運営する「メタパ」アプリケーションの開発支援を通して、Unityや3DCGを活用した新機能の開発支援を体験 ・メタバースアプロケーションの新サービスプロトタイプ開発体験 上記2つの体験プログラムを予定しております。 限られた時間の中、それぞれの興味分野・保有ノウハウに合わせてプログラム内容やレクチャー範囲ははカスタマイズしていくスタイルを想定しています。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) DXデザイン事業部 ICT開発センター (東京都北区東十条3-10-36 8F)	無し
	38	SmartLCA-CO2 アプリケーション開発	専攻問わず	・5月中旬にリリースしたSmartLCA-CO2の機能拡充におけるアプリケーション開発実戦 ・企画部門との討議に参加し、市場背景をレクチャー。「何のために」、「求められる」、「必要とされる」機能定義から参画 ・現バージョンのシステム構成、アーキテクチャーなど、アプリケーション概要を把握 ・担当パート決定後、プロジェクト参画、機能拡充開発実戦(TypeScript)	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) DXデザイン事業部ICT開発センター (東京都北区東十条3-10-36 8F)	無し
;	39	サービス開発・業務系システム開発	専攻問わず	当チームでは、顧客業務システムの開発から自社ITサービスの開発を行っております。 実際にサービスの要件定義・システム設計や、実案件の開発実務を体験していただきます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) DXデザイン事業部 ICT開発センター (東京都北区東十条3-10-36 8F)	無し
		RFID・IoT技術を活用したモノのIDマネジメント需要に向けたソリューション開発	専攻問わず	トッパンはRFID事業の規模拡大に向けて、「真の強み」による事業の持続的発展を目指し、 「変化する顧客需要に適合するデバイス製品の強化」と「モノのID機能を引き出すシステム・ソリューションの充実」により、 顧客のDX・SX推進におけるID需要に応えグローバル視点での事業化に取り組んでいます。 本インターンシップでは、デバイス開発とソリューション開発の両面に於いて、グローバル視点での事業拡大を目指した開発業務を体験して頂きます。	9月11日(月)~15日(金) 9:00-18:00	凸版印刷小石川本社ビル 東京都文京区水道1-3-3 RFID朝霞ラボ 埼玉県新座市野火止7-21-33(朝霞工場内) 東京ビッグサイト 東京都江東区有明3-11-1	無し
,		IoT関連セキュリティデバイスの アプリケーションプログラム開発	電気·電子 情報·画像·通信	当部門では、『決済端末』や『デジタルキー』などのIoT機器やICカードといったセキュリティ製品に関わるアプリーケーションプログラム開発を実施しています。 本インターンシップでは、実際に、開発機を用いて、セキュリティ製品のプログラミングプロセスの実務を体験して頂きます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	有り
,		サービスクラウドへのサーバ構築または、組込みソフ トウェア開発	情報∙画像∙通信	IoT向けに新規ソリューションの企画・開発を行っています。 インターンシップでは、希望もしくは適正に合わせて、サービスクラウドへのサーバ構築やマイコン(セキュアエレメント)へのソフトウェア開発を 上流工程の設計から下級工程の実装・評価までを体験していただきます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	無し
	43	IoT向け次世代LPWA通信技術ZETA におけるデータ利活用サービス開発・ アプリケーション開発	専攻問わず	IoT無線通信を基盤とした社会課題解決型ビジネスを展開中のZETA・IoTチームにて、 技術にも企画にも触れられる実務を体験していただきます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	無し
	44	域内経済循環の実現による地方経済の活性化を実 現するキャッシュレス・プラットフォームの構 築・提供	専攻問わず	コロナ影響や燃料高価の影響を受け、冷え込んだ地方経済の活性化を目指し、域内経済におけるカネ・ヒト・モノの循環による自走を実現させる 仕組み・仕掛けを「キャッシュレス」という切りロでアプローチ。 地域経済の抱える課題を把握し、その課題解決を目指した提案活動を体験していただきます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) 小石川本社ビル(東京都文京区水道1-3-3)	無し
エレクト		ものづくりの最前線@滋賀工場 〜ディスプレイ関連製品(反射防止フィルム)工場見学〜	専攻問わず	印刷技術を応用した微細加工技術や表面加工技術をもとに、今後多用途化が見込まれるディスプレイ関連部材として、 反射防止フィルムを生産している滋賀工場にて職場体験実習を行います。 成長産業であるエレクトロニクス事業の紹介はもちろん、実際に滋賀工場で働いている先輩社員との交流や、 クリーンウェアを着用し工場の生産ラインの見学や実習も行います。 全世界の人々の暮らしに大きく貢献している、エレクトロニクス商材を通じ、滋賀工場において、どのようなビジネスに携わることができるのか、是非体感してみてください。 ※反射防止フィルムとは:テレビやスマートフォンなどのディスプレイの最表面に搭載され、外光の反射や映り込みなどを抑える光学フィルムです。	8月28日(月)~9月1日(金) 9:00-18:00	凸版印刷(株) エレクトロニクス事業本部 滋賀工場 (滋賀県東近江市妙法寺町1101-20)	有り
-ロニクス	46	ものづくりの最前線@新潟工場 〜半導体関連製品(FC-BGAサブストレート) 工場 見学〜	機械 電気・電子 化学・材料 情報・画像・通信 数理 物理 バイオ・環境	長年培った高度な技術をもとに、トッパンではめまぐるしく進化する半導体市場で顧客ニーズに応じた様々な製品を提供しており、その中でも半導体パッケージFC-BGAサブストレートを生産している新潟工場にて職場体験実習を行います。 成長産業であるエレクトロニクス事業全体の紹介はもちろん、実際に新潟工場で働いている先輩社員との交流や、 クリーンウェアを着用し工場の生産ラインの見学や実習を行います。 全世界の人々の暮らしに大きく貢献している、エレクトロニクス商材を通じ、新潟工場において、 どのようなビジネスに携わることができるのか、是非体感してみてください。 ※FC-BGAサブストレートとは:LSIチップの高速化、多機能化を可能にする高密度半導体パッケージ基板となり、 PCやゲーム機などのネットワークやアミューズメント、自動車など社会や人々の暮らしを豊かにする製品に使用される製品です。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷(株) エレクトロニクス事業本部 新潟工場 (新潟県新発田市五十公野字山崎5270)	有り

部門	番号	テーマ	推奨系統	概要	実施期間	実施場所	宿泊施設手配の 有無
	47	生活系技術・福崎工場でのインターン (工程見学や社員座談会など)	専攻問わず	5日間で、兵庫県にある工場の実務(設備管理や装置の改良提案)を経験する就業型インターンシップです。 また就業期間中に実務だけではなく、社員との懇親会や各工場見学などより深くトッパンを知っていただけるプログラムです。	8月28日(月)~9月1日(金) 9:00-18:00	凸版印刷㈱福崎工場 (兵庫県神崎郡福崎町高橋290-29)	無し
西	48	関西拠点オフィスでの Webサイト・アプリの企画・開発体験	情報・画像・通信	関西の拠点である中之島オフィスにて当社が運営するWebサイトやアプリを題材に、 新機能・新サービスの企画・開発に挑戦、体感していただきます。	9月11日(月)~15日(金) 9:00-18:00	凸版印刷㈱関西事業部 (大阪市北区中之島2-3-18中之島フェスティバルタワー)	無し
九	49	金融向けWebシステムの受託開発	情報・画像・通信 電気・電子	当チームは、得意先課題へのシステム面の対応や、主体的なシステム導入提案に取り組んでいます。 社内及び外部システム開発会社とも連携の上で提案を実施し、受託後は要件定義・基本設計などの業務に取り掛かります。 開発段階では、パートー企業と連携。開発されたシステムについては、品質テストを実施します。 本インターンシップでは、上記受託システム開発業務の流れを体験していただきます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷㈱ 九州事業部 (福岡県福岡市中央区薬院1-17-28)	有り
<i>ነ</i> ነነ	50	XR技術を活用したコンテンツ企画立案・開発	専攻問わず	当チームは、TOPPANの強みであるVRなどの先端映像に関わる企画提案から開発ディレクションを主体に取り組んでいます。 本インターンシップでは、メタバースやXR(VR/AR/MR)などの「コンテンツDXソリューション」で、 教育・文化・観光領域で得意先の課題解決に向けた企画提案・開発の実務を体験していただきます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷㈱ 九州事業部 (福岡市中央区薬院1-17-28)	有り
中四国	51	DX事業推進の基盤となるシステムの 構築・運用保守		DX事業推進の柱となるBPO業務及び流通向けアプリケーション、データ管理システムの開発、 運用支援の現場を見ていただきシステム構築からシステム運用のプロセスを実体験していただきます。 ※BPOとは、ビジネス・プロセス・アウトソーシングの略で、業務プロセスの一部を外部の事業者へ委託することを指します。 この場合は、トッパンがクライアントから委託を受けた業務を社内で運用するためのシステム構築や事務局運営を行っています。	①8月28日~9月1日 ②9月11日~9月15日	凸版印刷㈱ 中四国事業部 (広島県広島市南区松原町2-62 広島JPビルディング19階)	有り
東日	52	技術開発/システムエンジニア @仙台事業所	専攻問わず	東日本エリアの拠点である仙台事業所にて、東日本地区の注力事業のひとつである「BPR事業」のシステム開発部門にて就業体験をしていただきます。 顧客の業務改革や受託業務における「システム開発・運用」、「データ処理」などの「データソリューション開発」担う部門での就業体験を通じて、 地方活性化に取り組んでいる現場を体験いただきます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷㈱ 仙台事業所 (仙台市泉区明通3-30)	無し
本	53	生産技術スタッフ @仙台工場	専攻問わず	東日本エリアの拠点である仙台事業所にて、仙台工場のスマートファクトリー化を推進する「生産技術部門」にて就業体験をしてただきます。 工場の設備管理や装置の改良、作業の改善などを通じてお客様や販売企画部門と連携したトッパンの「ものつくり」の魅力を体験していただきます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷㈱ 仙台事業所 (仙台市泉区明通3-30)	無し
北海道	54	生産技術および品質保証		北海道(札幌・千歳)では、BPO・DX・SXに対応した北海道最先端のスマートファクトリーを目指し、モノつくりに取り組んでいます。 日本の食料基地「北海道」において、付加価値を高めるサステナブル包材工場や製造DXを推進しているコンタクトセンター等の現場を体感して頂きます。	9月4日(月)~8日(金) 9:00-18:00	凸版印刷㈱ 札幌工場(札幌市西区二十四軒4条1-1-30) 千歳工場(千歳市北信濃855)	有り
中部	55	マーケティングDXにおける BIツールでの顧客データ分析/ Webサイト行動データシーケンス分析/ データベース設計		マーケティングDXを推進する上で必要な、テクノロジー(BIツール/シーケンス分析ツール)を使ったデータ分析や、 CDP(Customer Data Platform)やCRM(Customer Rerationship Management)ツールで、 マーケティングに活用するデータベースの設計/開発を体験頂きます。	9月11日(月)~15日(金) 9:00-18:00	凸版印刷㈱中部事業部 (愛知県名古屋市西区野南町19番地)	無し
	56	スマートファクトリー化に向けた SCADAシステムの開発	情報・画像・通信	群馬センター工場は、国内最大級の軟包材の生産工場であり、スマートファクトリー化の実現を目指し、生産設備にSDCADAの導入を進めています。 本インターンシップでは、SCADAソフトを活用したセンサデータの取得や自動帳票や自動配信といったシステムの開発の一部を担当してもらい、 実際に導入されるSCADA開発業務を実体験していただきます。 また、実務だけでなく、社員との懇親会や各工場、工程見学などより深くトッパンの魅力を知っていただきます。	8月28日(月)~9月1日(金) 9:00-18:00	凸版印刷(株)群馬センター工場 (群馬県邑楽郡明和町大輪667-1)	有り
生 活 · 産 業	57	サスティナブルパッケージ開発		群馬センター工場は、国内最大級の軟包材の生産工場であり、サスティナブルパッケージを開発するため、工場では新プロセスの開発を行っています。 本インターシップでは、新製品立上げやプロセス開発のテストに立ち合い、物性評価を実体験してもらいます。 また、実務だけでなく、社員との懇親会や各工場、工程見学などより深くトッパンの魅力を知っていただきます。	8月28日(月)~9月1日(金) 9:00-18:00	凸版印刷㈱群馬センター工場 (群馬県邑楽郡明和町大輪667-1)	有り
	58	デジタル技術活用 設備保全システムの開発		群馬センター工場は、国内最大級の軟包材の生産工場であり、日々多くの生産機が稼働しています。 本インターンシップでは、保守・保全というアナログな部分を、RPA・AIなどを交えたデジタル技術を活用して改善していく業務の一部を担当してもらい、 システム開発業務を実体験していただきます。また、実務だけでなく、社員との懇親会や各工場、工程見学などより深くトッパンの魅力を知っていただきます。	8月28日(月)~9月1日(金) 9:00-18:00	凸版印刷(株)群馬センター工場 (群馬県邑楽郡明和町大輪667-1)	有り